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ABSTRACT

We develop a formalization of floating-point numbers in PVS based on a well-known
formalization in Coq. We first describe the definitions of all the needed notions, e.g.,
floating-point number, format, rounding modes, etc; then, we present an application
to polynomial evaluation for elementary function evaluation. The application already
existed in Coq, but our formalization shows a clear improvement in the quality of the
result due to the automation provided by PVS. We finally integrate our formalization
into a PVS hardware-level formalization of the IEEE-854 standard previously developed
at NASA.

1 INTRODUCTION

Floating-point numbers are the internal representation of real numbers used by most general-
purpose processors. Floating-point arithmetic is described by the IEEE-754 [22, 23] and
IEEE-854 standards [8]. These standards define the format, rounding modes, and operations
that can be performed on floating-point numbers. For more information on floating-point
numbers and numerical computation, see [13,15,18,24].

The correctness of floating-point computations is critical to engineering applications (see,
for example, the Pentium Bug [9]). For that reason, floating-point arithmetic is an active sub-
ject of research in the formal methods community. Formal techniques have been successfully
applied, both for hardware-level verification (AMD, Intel) and high-level algorithms (evalua-
tion of the exponential) in a variety of proof assistants and model-checkers [1,6,7,14,17,20].

The work presented in this report is based on the formalization of floating-point numbers
in Coq by Daumas, Rideau, and Théry described in [11]. That formalization has been
thoroughly used and it forms the kernel of the Coq’s library on floating-point arithmetic
(http://lipforge.ens-lyon.fr/projects/pff). It is especially useful when dealing with
high-level algorithms [3] because it does not consider the machine-level array of bits, but only
a representation of floating-point numbers by integer numbers that are more easily handled
by a person or a proof assistant.

In this report, we describe the port of the floating-point arithmetic formalization from
Coq [2, 10] to PVS [19]. The rest of this paper is organized as follows. Section 2 defines
the basic concepts. The rounding modes are presented in Section 3. Section 4 states the
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fundamental properties of floating-point numbers. Section 5 illustrates the application of
the formalization to polynomial evaluation. Section 6 shows the integration of the high-
level formalization to a hardware-level specification of the IEEE-854 standard developed at
NASA [17]. We give conclusions and perspectives in Section 7.

2 FLOATING-POINT NUMBERS

Following the definition in [11], a floating-point number is represented by a pair of integers,
e.g., the radix-2 floating-point number 1.001E1 is represented as (9,−2), i.e., 1.001E12 = 9×
2−2. Henceforth, we take the names used in the current revision of the IEEE-754 standard1.
The left part of a float is called the significand and the right part is the exponent. Note that
the exponent is shifted compared to the exponent of the IEEE machine number. In PVS,
we use a record with two fields Fnum and Fexp that correspond to the significand and the
exponent, respectively.

float: TYPE = [# Fnum:int, Fexp:int #]

The radix is defined as 2 in the IEEE-754 standard and can be either 2 or 10 in the
IEEE-854 standard. In this formalization, the radix β (radix, in PVS) is a parameter of
the specification and it is declared as an integer greater than 1. Therefore, a float can be
interpreted as a real value as follows:

(n, e) ∈ Z2 ↪→ n× βe ∈ R

FtoR(f):real = Fnum(f)*radix^(Fexp(f))

CONVERSION FtoR

Note that we declare FtoR as a conversion. This way, elements of the type float are auto-
matically converted into real numbers when needed. We also define some basic operations
on floats, e.g., Fabs(f) is a float such that its real value is the absolute value of the real
value of f and Fopp(f) is a float having the negative value of f.

Fabs(f):float = (# Fnum:=abs(Fnum(f)), Fexp:=Fexp(f) #)

Fopp(f):float = (# Fnum:=-(Fnum(f)), Fexp:=Fexp(f) #)

FoppCorrect : lemma Fopp(f)=-f

FabsCorrect : lemma Fabs(f)=abs(f)

2.1 Bounded Floats

The type float represents an infinite number of numbers and only a finite of these can
be represented as machine floating-point numbers. We have to restrict this type to the
numbers that fit in a given floating-point format. A floating-point format (typically IEEE
single or double precision) is a pair of integers (p, E). The integer p is called the precision
of the floating-point format and E is the minimal exponent. For example, the IEEE double

1See http://754r.ucbtest.org/ for drafts and minutes.
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precision is specified by the pair (53, 1074) and the single precision is specified by the pair
(24, 149). For a given format (p, E), we say that a float (n, e) is bounded if and only if

|n| < βp, and (1)

−E ≤ e. (2)

In PVS, a format is a record with fields Prec and dExp that correspond to p and E,
respectively.

Format: TYPE = [# Prec:above(1), dExp:nat #]

vNum(b:Format):posnat = radix^Prec(b)

Fbounded?(b)(f):bool = abs(Fnum(f)) < vNum(b) AND -dExp(b) <= Fexp(f)

The lower bound on the exponent is needed as it creates subnormal numbers, whose
behavior is often unexpected. In this formalization, we do not consider overflows and we
argue that they can be handled at a higher specification level. Overflows create infinities
and NaNs, but they are usually propagated until the end of the computation. Therefore,
overflows are more easily detected than underflows as subnormal numbers are silent even
when the loss of accuracy is huge.

2.2 Canonical Floats

The chosen representation of floats in this formalization is redundant, i.e., several floats may
have the same real value. This is true even if the floats are bounded. For example, using
radix 2 and 4 bits of precision, the floats (8, 0), (4, 1), (2, 2) and (1, 3) are all bounded and
have the real value 8. The sets of floats that share the same real value are called a cohort.

In order to represent IEEE machine floating-point numbers, which by definition are
unique, we have to define a canonical set of floats. A canonical float is a float that is either
normal or subnormal. A normal float is a float such that its significand cannot be multiplied
by the radix and still fit in the format. This means that the first digit of the significand,
represented in base β, is nonzero. A subnormal float is a float having the minimal exponent
such that its significand could be multiplied by the radix and still fit in the format.

Fnormal?(b)(f):bool = Fbounded?(b)(f) AND vNum(b)<=abs(radix*Fnum(f))

Fsubnormal?(b)(f):bool = Fbounded?(b)(f) AND Fexp(f)=-dExp(b)AND

abs(radix*Fnum(f)) < vNum(b)

Fcanonic?(b)(f):bool = Fnormal?(b)(f) OR Fsubnormal?(b)(f)

By definition, normal and subnormal floats are disjoint. Subnormal floats are the small-
est representable floats (in absolute value) and their characteristics are very different from
the normal floats. They may produce surprising numerical results due to their uncommon
characteristics.
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We prove that canonical floats are unique: if two floats are canonical and have the same
real value, then they are identical. Then, we prove that any bounded float has a canonical
representation obtained by applying the function Fnormalize. We take advantage of PVS
sub-typing to guarantee that for all bounded float f and format b, Fnormalize(b)(f) is a
canonical float and equal to f (in real value).

FcanonicUnique: lemma

Fcanonic?(b)(p) AND Fcanonic?(b)(q) AND FtoR(p)=FtoR(q)

=> p=q

Fnormalize(b)(f:(Fbounded?(b))): recursive

{x : (Fcanonic?(b)) | FtoR(x)=FtoR(f) AND Fexp(x) <= Fexp(f)} =

if Fnum(f) = 0 then

(# Fnum:=0, Fexp:= -dExp(b)#)

elsif Fexp(f) = -dExp(b) or

abs(radix*Fnum(f)) >= vNum(b) then f

else Fnormalize(b)((# Fnum:=radix*Fnum(f), Fexp:=Fexp(f)-1 #))

endif

measure vNum(b) - abs(Fnum(f))

2.3 Ulp

The unit in the last place (ulp) is the value of the least significand digit of the representation
of the float. It is also the increment to add to a positive float to get the successor of the
float. Here, as we handle significands, this value is the radix to the power of the exponent,
if the float is canonical.

Fulp(b)(f:(Fbounded?(b))):real = radix^(Fexp(Fnormalize(b)(f)))

The ulp is generally used as a measure of the error made during a computation. Note
that there is a major difference between normal and subnormal floats when considering the
ulp of a float: for normal floats, we have ulp(f) ≤ β1−p|f |. In this case, ulp(f) � |f |. For
subnormal floats, the ulp is always β−E. In particular, ulp(β−E) = β−E, i.e., the ulp can be
as big as the real value of the float. We prove that

ulp(f) ≤ max
(
β1−p|f |, β−E

)
.

FulpLe : lemma

Fbounded?(b)(p)

=> Fulp(b)(p) <= max(abs(p) * radix/vNum(b), radix^(-dExp(b)))

2.4 Predecessor and Successor

The predecessor of a given float f is the greatest float strictly less than f . The successor of
a given float f is the smallest float strictly greater than f .
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Fsucc(b)(f):float = IF Fnum(f)=vNum(b)-1

THEN (# Fnum:=vNum(b)/radix, Fexp:=Fexp(f)+1 #)

ELSIF Fnum(f)=-vNum(b)/radix AND Fexp(f)>-dExp(b)

THEN (# Fnum:=-(vNum(b)-1), Fexp:=Fexp(f)-1 #)

ELSE (# Fnum:=Fnum(f)+1, Fexp:=Fexp(f) #)

ENDIF

Fpred(b)(f):float = IF Fnum(f)=-(vNum(b)-1)

THEN (# Fnum:=-vNum(b)/radix, Fexp:=Fexp(f)+1 #)

ELSIF Fnum(f)=vNum(b)/radix AND Fexp(f)>-dExp(b)

THEN (# Fnum:=vNum(b)-1, Fexp:=Fexp(f)-1 #)

ELSE (# Fnum:=Fnum(f)-1, Fexp:=Fexp(f) #)

ENDIF

ENDIF

We prove several useful properties of these functions. For example, the opposite of the
successor is the predecessor of the opposite (FpredFoppFsucc).

FpredFoppFsucc: lemma Fpred(b)(Fopp(f))=Fopp(Fsucc(b)(f))

FsuccFoppFpred: lemma Fsucc(b)(Fopp(f))=Fopp(Fpred(b)(f))

FpredLt : lemma Fpred(b)(f) < f

FsuccFpred : lemma Fcanonic?(b)(f) => Fsucc(b)(Fpred(b)(f))=f

FpredCanonic: lemma Fcanonic?(b)(f) => Fcanonic?(b)(Fpred(b)(f))

FpredPos : lemma Fcanonic?(b)(p) AND 0 < p => 0 <= Fpred(b)(p)

FpredDiff: lemma

Fcanonic?(b)(f) AND 0 < f

=> f-Fpred(b)(f)=Fulp(b)(Fpred(b)(f))

FpredProp: lemma

Fcanonic?(b)(p) AND Fcanonic?(b)(q) AND p < q

=> p <= Fpred(b)(q)

3 ROUNDING MODES

Floating-point operations in the IEEE standards are defined such that the result is the same
as if the operation is computed with infinite precision and then rounded to the destination
format. Hence, instead of a direct definition of floating-point addition ⊕, we define a rounding
mode ◦ over real expressions, and from there, f ⊕ g can be defined based on ◦(f + g). In
practice, there are several possible definitions of the rounding operation ◦. For instance, the
rounding toward −∞ (isMin?, in PVS) is the biggest floating-point number whose value is
smaller than the real number. Similarly, the rounding toward +∞ (isMax?, in PVS) is the
smallest bounded floating-point number whose value is bigger than the real number.

As several floats may represent the same floating-point number, we define the rounding
operation as a relation between real numbers and bounded floats, rather than a function
from real numbers to bounded floats.

5



RND : TYPE = [b:Format -> [[real,(Fbounded?(b))]->bool]]

isMin?(b)(r:real,min:(Fbounded?(b))):bool =

min <= r AND

forall (f:(Fbounded?(b))): f <= r => f <= min

isMax?(b)(r:real,max:(Fbounded?(b))):bool =

r <= max AND

forall (f:(Fbounded?(b))): r <= f => max <= f

Note that we do not explain (yet) how to compute these rounding modes, we just state
the properties that they satisfy. Furthermore, we say that a rounding mode is well-defined
if it is

• total, i.e., all reals can be rounded,

• compatible, i.e., if two floats have the same real value and one is a rounding of a real
value, then the other one is too,

• minormax, i.e., each rounding is either the rounding toward +∞ or −∞ of the real
number, and

• monotone, i.e., non-decreasing.

Some rounding modes are moreover unique, i.e., each real number has only one rounding,
which may have a cohort of representations.

P : VAR RND

Total?(b)(P):bool = forall (r:real):

exists (f:(Fbounded?(b))): P(b)(r,f)

Compatible?(b)(P):bool = forall (r1,r2:real, f1,f2:(Fbounded?(b))):

P(b)(r1,f1) AND r1=r2 AND FtoR(f1)=FtoR(f2)

=> P(b)(r2,f2)

MinOrMax?(b)(P):bool = forall (r:real,f:(Fbounded?(b))):

P(b)(r,f) => isMin?(b)(r,f) OR isMax?(b)(r,f)

Monotone?(b)(P):bool = forall (r1,r2:real, f1,f2:(Fbounded?(b))):

r1 < r2 AND P(b)(r1,f1) AND P(b)(r2,f2)

=> f1 <= f2

RoundedMode?(b)(P):bool =

Total?(b)(P) AND Compatible?(b)(P) AND

MinOrMax?(b)(P) AND Monotone?(b)(P)

Unique?(b)(P):bool = forall (r:real,f1,f2:(Fbounded?(b))):

P(b)(r,f1) AND P(b)(r,f2)

=> FtoR(f1)=FtoR(f2)
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3.1 IEEE Rounding Modes

The IEEE standards define 4 rounding modes, but a fifth one has been added in the revision
of the IEEE-754 standard. We have already defined the rounding toward ±∞, we now add
all the other rounding modes defined by the IEEE-754 standard and its revision. The nearest
rounding mode yields the float that is nearer to the real value. Note that this rounding is not
unique when the real number is exactly in the middle of two floats. The revision of the IEEE-
754 standard defines two unique rounding modes to the nearest: an even rounding mode,
which when in the middle, chooses the float having an even significand, and an away from
zero rounding mode, which when in the middle, chooses the one with the greater absolute
value.

ToZero?(b)(r:real,c:(Fbounded?(b))):bool =

if 0 <= r then isMin?(b)(r,c)

else isMax?(b)(r,c) endif

Nearest?(b)(r:real,c:(Fbounded?(b))):bool =

(forall (f:(Fbounded?(b))): abs(c-r) <= abs(f-r))

EvenNearest?(b)(r:real,c:(Fbounded?(b))):bool = Nearest?(b)(r,c) AND

(even?(Fnum(Fnormalize(b)(c))) OR

(forall (f:(Fbounded?(b))): Nearest?(b)(r,f) => FtoR(f)=FtoR(c)))

AFZNearest?(b)(r:real,c:(Fbounded?(b))):bool = Nearest?(b)(r,c) AND

(abs(r) <= abs(c) OR

(forall (f:(Fbounded?(b))): Nearest?(b)(r,f) => FtoR(f)=FtoR(c)))

We prove that these rounding modes are well-defined and, except for the nearest rounding
mode, that they are unique.

isMin_RoundedMode : lemma RoundedMode?(b)(isMin?)

isMax_RoundedMode : lemma RoundedMode?(b)(isMax?)

ToZero_RoundedMode : lemma RoundedMode?(b)(ToZero?)

Nearest_RoundedMode : lemma RoundedMode?(b)(Nearest?)

EvenNearest_RoundedMode: lemma RoundedMode?(b)(EvenNearest?)

AFZNearest_RoundedMode : lemma RoundedMode?(b)(AFZNearest?)

isMin_Unique : lemma Unique?(b)(isMin?)

isMax_Unique : lemma Unique?(b)(isMax?)

ToZero_Unique : lemma Unique?(b)(ToZero?)

EvenNearest_Unique: lemma Unique?(b)(EvenNearest?)

AFZNearest_Unique : lemma Unique?(b)(AFZNearest?)

Finally, we provide functional specifications of the toward ±∞ and even nearest rounding
modes, and prove that they are correct.
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RND_aux(b)(x:nonneg_real): (Fcanonic?(b)) =

if (x < radix^(-dExp(b)-1)*vNum(b))

then (# Fnum:=floor(x*radix^(dExp(b))), Fexp:=-dExp(b) #)

else let e=floor(ln(x*radix/vNum(b))/ln(radix)) in

(# Fnum:=floor(x*radix^(-e)), Fexp:=e #)

endif

RND_Min(b)(x:real): (Fcanonic?(b)) =

if (0 <= x)

then RND_aux(b)(x)

elsif Fopp(RND_aux(b)(-x))=x then Fopp(RND_aux(b)(-x))

else Fpred(b)(Fopp(RND_aux(b)(-x)))

endif

RND_Max(b)(x:real): (Fcanonic?(b)) = Fopp(RND_Min(b)(-x))

RND_ENearest(b)(x:real): (Fcanonic?(b)) =

if abs(RND_Min(b)(x)-x) < abs(RND_Max(b)(x)-x) then RND_Min(b)(x)

elsif abs(RND_Max(b)(x)-x) < abs(RND_Min(b)(x)-x) then RND_Max(b)(x)

elsif RND_Min(b)(x)=RND_Max(b)(x)::real then RND_Min(b)(x)

elsif even?(Fnum(RND_Min(b)(x))) then RND_Min(b)(x)

else RND_Max(b)(x)

endif

RND_Min_isMin : lemma isMin?(b)(r,RND_Min(b)(r))

RND_Max_isMax : lemma isMax?(b)(r,RND_Max(b)(r))

RND_ENearest_isEnearest: lemma EvenNearest?(b)(r,RND_ENearest(b)(r))

Note that the IEEE standards only require correct rounding for +, −, ×, /,
√

, and for
the fused multiply-and-add (FMA): a× b + c with only one rounding in the revision of the
IEEE-754 standard. Therefore, although these rounding modes can be used to round any real
number, e.g., exp(2), there is no guarantee that the result is the same as the floating-point
computation of exp(2) on a particular processor.

3.2 Properties of Rounding Modes

Here are some basic and well-known properties about rounding modes. Even if our definition
of rounding modes is uncommon, we can easily prove these properties.

A useful property of the rounding modes concerns the rounding of opposite numbers: the
rounding down of r is the opposite of the rounding up of −r.

8



MinOppMax : lemma

Fbounded?(b)(p) AND isMin?(b)(r,p)

=> isMax?(b)(-r,Fopp(p))

MaxOppMin : lemma

Fbounded?(b)(p) AND isMax?(b)(r,p)

=> isMin?(b)(-r,Fopp(p))

NearestFopp: lemma

Fbounded?(b)(p) AND Nearest?(b)(r,p)

=> Nearest?(b)(-r,Fopp(p))

NearestFabs: lemma

Fbounded?(b)(p) AND Nearest?(b)(r,p)

=> Nearest?(b)(abs(r),Fabs(p))

Another useful property is the fact that the sign of a real number is preserved by any
rounding mode: a non-negative real is always rounded into a non-negative float.

RleRoundedR0 : lemma

Fbounded?(b)(f) AND RoundedMode?(b)(P) AND P(b)(r,f) AND 0 <= r

=> 0 <= f

RleRoundedLessR0 : lemma

Fbounded?(b)(f) AND RoundedMode?(b)(P) AND P(b)(r,f) AND r <= 0

=> f <= 0

Moreover, a bounded float is always rounded to itself.

RoundedProjectorEq : lemma

Fbounded?(b)(f) AND Fbounded?(b)(p) AND RoundedMode?(b)(P) AND P(b)(f,p)

=> FtoR(p)=FtoR(f)

RoundedProjector : lemma

Fbounded?(b)(f) AND RoundedMode?(b)(P)

=> P(b)(f,f)

4 FUNDAMENTAL PROPERTIES

4.1 Round-off Errors

The round-off error is the difference between the real value and its rounding. It is usually
described in terms of the ulp (Section 2.3). We prove that for any rounding mode, this
difference is strictly less than one ulp. Furthermore, for any rounding mode to the nearest,
this difference is less than or equal to half an ulp:
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RoundedModeUlp : lemma

Fbounded?(b)(p) AND RoundedMode?(b)(P) AND P(b)(r,p)

=> abs(p-r) < Fulp(b)(p)

NearestUlp : lemma

Fbounded?(b)(p) AND Nearest?(b)(r,p)

=> abs(p-r) <= Fulp(b)(p)/2

4.2 Canonical Floats

The canonical representation is the one having the smallest exponent of the cohort. This
is a new and unexpected property as the notion of cohort was defined by the commission
revising the IEEE-754 standard.

CanonicLeastExp: lemma

Fcanonic?(b)(p) AND Fbounded?(b)(q) AND FtoR(p)=FtoR(q)

=> Fexp(p) <= Fexp(q)

4.3 Lexicographical Order

This property states that given two nonnegative IEEE floating-point numbers f and g, f is
smaller than g if the string of bits representing f is less, in lexicographical order, than the
string of bits representing g. In our formalization, we express that property as the fact that
the real value and the exponent of two positive floats are in the same order relation.

Lexico: lemma

Fcanonic?(b)(p) AND Fcanonic?(b)(q) AND 0 <= p AND p <= q

=> Fexp(p) <= Fexp(q)

4.4 Exact Subtraction

This property has been known for decades: it can be found in [21] but its paternity may be
due to W. Kahan. This theorem gives sufficient conditions for a subtraction to be exact.
The theorem states that if p and q are bounded floats such that p

2
≤ q ≤ 2 p, then the float

Fminus(q,p), which has the value q − p, is bounded.

Sterbenz : theorem

Fbounded?(b)(p) AND Fbounded?(b)(q) AND p/2 <= q AND q <= 2*p

=> Fbounded?(b)(Fminus(q,p))

By Lemma RoundedProjector (Section 3.2), a bounded float is exactly rounded. There-
fore, the computation ◦(q − p) is correct for any rounding mode ◦. Note that we have here
exhibited a bounded float equal to q − p, which is not necessarily canonical (we can always
normalize it afterward if needed). The way this lemma is stated makes it easy to use it:
instead of “there exists a bounded float such that . . . ”, it gives a particular float that is
bounded.
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4.5 Representable Errors

It has been known since the 70s that the error of a floating-point addition (when rounding to
the nearest) or of a floating-point multiplication fits in a floating-point number of the same
format [12,16]. We give necessary and sufficient conditions for this error to be representable,
even when underflow occurs [4]. Furthermore, we compute the exponent of the exhibited
bounded float that represents the error term.

errorBoundedPlus : lemma

Fbounded?(b)(p) AND Fbounded?(b)(q) AND Fbounded?(b)(f) AND

Nearest?(b)(p+q,f)

=> (exists (e:(Fbounded?(b))): e=p+q-f AND

Fexp(e)=min(Fexp(p),Fexp(q)))

errorBoundedMult : lemma

Fbounded?(b)(p) AND Fbounded?(b)(q) AND Fbounded?(b)(f) AND

RoundedMode?(b)(P) AND P(b)(p*q,f) AND -dExp(b) <= Fexp(p)+Fexp(q)

=> (exists (e:(Fbounded?(b))): e=p*q-f AND Fexp(e)=Fexp(p)+Fexp(q))

5 POLYNOMIAL EVALUATION

In this section, we present an application of our formalization to polynomial evaluation. This
application was originally developed in Coq [5]. Due to the powerful automation features
provided by PVS, the results presented here are significantly better than the original ones.

When computing a polynomial evaluation using Horner’s rule after an argument reduc-
tion, the last step usually creates the biggest error in the final result. For example, for the
evaluation of the exponential, we compute 1 + x + x2

2
+ . . . with |x| ≤ ln(2)

2
� 1. The errors

in computing x2

2
+ . . . are negligible compared to the final result whose value is about 1.

Therefore, we need to accurately compute expressions of the form a× x + y, where a, x
and y represent approximations of the ideal real values a′, x′ and y′. An exact rounding is
impossible to guarantee. However, we will describe and prove that a faithful rounding can
still be obtained.

5.1 Faithful Computations

A faithful computation is a relation between a real number and the float numbers that are
either the rounding up or the rounding down of the real value.

MinOrMax?(r:real,f:(Fbounded?(b))):bool=

isMin?(b)(r,f) OR isMax?(b)(r,f)

We can prove the following sufficient conditions for a given computation to be faithful
(see [5] for more details).
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MinOrMax1 : lemma

Fcanonic?(b)(f) AND 0 < f AND abs(f-z) < Fulp(b)(Fpred(b)(f))

=> MinOrMax?(z,f)

MinOrMax2 : lemma

Fcanonic?(b)(f) AND 0 < f AND abs(f-z) < Fulp(b)(f) AND f <= z

=> MinOrMax?(z,f)

5.2 Round-off Error

The following theorems allow us to bound a float with the real values it rounds. These
bounds are better than the ones presented in [5].

If f = ◦(r) is canonical and non-zero, then

|r|
1 + 1

2×|nf |
≤ |f | ≤ |r|

1− 1
2×|nf |

.

Note that the bounds above do not require f to be normal. If f is known to be normal, we
can deduce that

|r|
1 + βp−1

2

≤ |f | ≤ |r|
1− βp−1

2

.

RoundLe : lemma

Fcanonic?(b)(f) AND f /= 0 AND Nearest?(b)(z,f)

=> abs(f) <= abs(z)/(1-1/(2*abs(Fnum(f))))

RoundGe : lemma

Fcanonic?(b)(f) AND f /= 0 AND Nearest?(b)(z,f)

=> abs(z)/(1+1/(2*abs(Fnum(f)))) <= abs(f)

The next theorem allows us to handle the case where p is near a power of the radix. In
this case, the ulp of its predecessor is twice smaller and the preceding theorems are not good
enough. This theorem states that even in this case, the rounding to the nearest is closer to
the real value than its predecessor and this distance can be expressed with the ulp of the
predecessor.

NearestUlp2 : lemma

Fcanonic?(b)(p) AND Nearest?(b)(r,p) AND

abs(r) <= abs(p) + Fulp(b)(Fpred(b)(Fabs(p)))/2

=> abs(p-r) <= Fulp(b)(Fpred(b)(Fabs(p)))/2

5.3 Sufficient Conditions

In order to compute a × x + y, we first compute t = ◦(a × x) and, then, u = ◦(t + y),
where ◦ is the rounding to the nearest. In this section, we provide sufficient conditions on
a, x, y, a′, x′, y′ for these computations to be faithful.

The lemmas in the previous sections allow us to prove the following result.
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AxpyPos : lemma

Nearest?(b)(a*x,t) AND Nearest?(b)(t+y,u) AND 0 < u AND

(Fnormal?(b)(t) => radix*abs(t) <= Fpred(b)(u)) AND

abs(y1-y+a1*x1-a*x) < Fulp(b)(Fpred(b)(u))/4

=> MinOrMax?(y1+a1*x1,u)

Unfortunately, we do not have a priori the outputs u and t to check for the sufficient
conditions on the lemma AxpyPos. The following lemma provides conditions that can be
checked a priori and without knowing the argument.

Axpy_opt : lemma

Nearest?(b)(a*x,t) AND Nearest?(b)(t+y,u) AND Prec(b) >= 6 AND

(radix+1+radix^(4-Prec(b)))*abs(a*x) <= abs(y) AND

abs(y1-y+a1*x1-a*x) < abs(y)*radix^(1-Prec(b))/(6*radix)

=> MinOrMax?(y1+a1*x1,u)

The last theorem corresponds to the more usual case: if the radix is 2 and the precision
greater or equal to 24 (single precision) then the conditions

3.000001 |a× x| ≤ |y| and |y′ − y + a′ × x′ − a× x| < |y| × 21−p

12

are sufficient to guarantee that u = ◦(y + ◦(a × x)) is a faithful computation of the exact
real value y′ + a′ × x′.

Axpy_simpl : lemma

Nearest?(b)(a*x,t) AND Nearest?(b)(t+y,u) AND

Prec(b) >= 24 AND radix = 2 AND (3+1/100000)*abs(a*x) <= abs(y) AND

abs(y1-y+a1*x1-a*x) < abs(y)*2^(1-Prec(b))/12

=> MinOrMax?(y1+a1*x1,u)

6 INTEGRATION INTO IEEE-854 SPECIFICATION

In 1995, Paul Miner and Vı́ctor Carreño formalized the IEEE-854 standard in PVS and in
HOL [6,7,17]. This is a complete hardware-level specification of the IEEE-854 standard that
represents significands as vectors of bits (or digits). In this sense, that formalization is more
detailed than ours. For example, it specifies overflow and assumes that the radix is either 2
or 10. However, it does not provide any of the high-level properties of our formalization.

After updating the IEEE-854 formalization to PVS3.2, we integrate our development
into it to combine the strength of both works. First, we define a PVS theory with the same
parameters and the same hypotheses as the ones in the IEEE-854 formalization (see [17] for
more details).

IEEE_link[radix, p: above(1), alpha, E_max, E_min: integer]: THEORY

ASSUMING

Base_values: ASSUMPTION radix = 2 OR radix = 10

Exponent_range: ASSUMPTION (E_max - E_min) / p > 5

...

ENDASSUMING
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Then, we define a Format to be used in our formalization.

b: Format = (# Prec := p, dExp := -E_min + p - 1 #)

Finally, we define the functions that map floating-point numbers from one representation to
the other.

ieee : VAR (finite?)

f : VAR float

IEEE_to_float(ieee): {x: (Fbounded?(b)) |

value(ieee) = x:: real AND abs(x) < radix^(E_max+1)} =

(# Fnum := (-1) ^ sign(ieee) * radix ^ (p - 1) *

Sum(p, value_digit(d(ieee))),

Fexp := Exp(ieee) + 1 - p #)

float_to_IEEE(f: (Fcanonic?(b)) | abs(f) < radix^(E_max+1)):

{x: (finite?) | f = value(x)} =

finite(sign_of(Fnum(f)), Fexp(f) + p - 1,

(LAMBDA (i: below(p)):

mod(floor(radix ^ (i+1-p) * abs(Fnum(f))), radix)))

Note the type constraints on the inputs and outputs of these functions. For example, to be
transformed into an IEEE float, our floats must not overflow, i.e., their value must be less
that βEmax+1.

6.1 Properties

We now can use those functions to prove properties on one formalization using the results
of the other one. For example, we prove that a bounded, non-zero, non-overflowing float has
a value between min_pos= βEmin+1−p and max_pos= βEmax+1 − βEmax+1−p.

value_nonzero_bis: lemma

Fbounded?(b)(f) AND abs(f) < radix^(E_max+1) AND f /= 0

=> min_pos <= abs(f) AND abs(f) <= max_pos

More interesting is the exact subtraction theorem (Section 4.4) using IEEE-854 numbers.

ieee,ieee2: VAR (finite?)

Sterbenz_bis : lemma

value(ieee)/2 <= value(ieee2) AND value(ieee2) <= 2*value(ieee)

=> (exists (s:(finite?)): value(s)=value(ieee2)-value(ieee))

In this case, there is no need for additional hypotheses: we guarantee that overflow cannot
occur if the inputs are regular IEEE floating-point numbers (finite?, meaning neither a
NaN, nor an infinity).
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6.2 Rounding Modes

The rounding modes of the IEEE-854 formalization are the rounding up, down, toward zero,
and to the nearest with the even tie breaking rule. We prove that, for any real number r,
the result of rounding r using one of those rounding modes is the same as rounding r using
the corresponding rounding mode in our formalization (Section 4). In other words, we prove
that our rounding modes are coherent with the IEEE-854 rounding modes. Of course, we
have to add the hypothesis that there is no overflow.

Roundings_eq_1: lemma

NOT trap_enabled?(underflow(FALSE)) AND

max_neg <= r AND r < radix ^ (E_max + 1)

=> fp_round(r, to_neg) = FtoR[radix](RND_Min(b)(r))

Roundings_eq_2: lemma

NOT trap_enabled?(underflow(FALSE)) AND

- radix ^ (E_max + 1) < r AND r <= max_pos

=> fp_round(r, to_pos) = FtoR[radix](RND_Max(b)(r))

Roundings_eq_3: lemma

NOT trap_enabled?(underflow(FALSE)) AND

abs(r) < radix ^ (E_max + 1) - (1 / 2) * radix ^ (E_max + 1 - p)

=> fp_round(r, to_nearest) = FtoR[radix](RND_ENearest(b)(r))

7 CONCLUSION

We have presented a formalization in PVS of the floating-point arithmetic based on an
existing formalization in Coq. The formalization contains a total of 280 lemmas, including
109 TCCs, in three theories. Using PVS 3.2 on a 2.60GHz processor, it takes more than
20 minutes to check all the proofs. The complete hierarchy of the PVS theories described
here is illustrated in Figure 1. Each node corresponds to a theory and the arrows show the
dependencies between theories (for example, the theory axpy described in Section 5 depends
on the theory float described in Sections 2, 3, and 4). The gray nodes correspond to theories
of the IEEE-854 specification that were updated to PVS 3.2.

The combination of a well-known formalization and a mechanical theorem prover with
powerful automation capabilities will enhance the future verification of numerical applica-
tions that rely on floating-point computations.
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